Power Grid Optimization in 3D Circuits U s i n g MIM and CMOS Decoupling Capacitors

نویسندگان

  • Pingqiang Zhou
  • Karthikk Sridharan
  • Sachin S. Sapatnekar
چکیده

In three-dimensional (3D) chips, the amount of supply current per package pin is significantly more than in twodimensional (2D) designs. Therefore, the power supply noise problem, already a major issue in 2D, is even more severe in 3D. CMOS decoupling capacitors (decaps) have been used effectively for controlling power grid noise in the past, but with technology scaling, they have grown increasingly leaky. As an alternative, metal-insulator-metal (MIM) decaps, with high capacitance densities and low leakage current densities, have been proposed. In this paper, we explore the tradeoffs between using MIM decaps and traditional CMOS decaps, and propose a congestion-aware 3D power supply network optimization algorithm to optimize this tradeoff. The algorithm applies a sequence-of-linear-programs based method to find the optimum tradeoff between MIM and CMOS decaps. Experimental results show that power grid noise can be more effectively optimized after the introduction of MIM decaps, with lower leakage power and little increase in the routing congestion, as compared to a solution using CMOS decaps only, and motivate the stronger need for these decaps in 3D technology, as compared to 2D designs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal-layer capacitors in the 65 nm CMOS process and the application for low-leakage power-rail ESD clamp circuit

Between the metal–insulator–metal (MIM) capacitor and metal–oxide–metal (MOM) capacitor, the MIM capacitor has a better characteristic of stable capacitance. However, the MOM capacitors can be easily realized through the metal interconnections, which does not need additional fabrication masks into the process. Moreover, the capacitance density of the MOM capacitor can exceed the MIM capacitor w...

متن کامل

On Chip Active Decoupling Capacitors for Supply Noise Reduction for Power Gating and Dynamic Dual Vdd Circuits in Digital VLSI

An active decoupling circuit is proposed to suppress on-chip power supply noise in digital VLSI circuits with focus on circuits using low power methodologies like power gating and Dual Vdd. The circuit is designed using 180nm technology and is tested for an ISCAS benchmark for effectiveness in suppressing noise effects as compared to passive decoupling capacitors and previous works. We show a b...

متن کامل

DECOUPLING CAPACITOR DESIGN ISSUES IN 90NM CMOS by

On-chip decoupling capacitors (decaps) are widely used to reduce power supply noise. Typically, designs use NMOS decaps between standard-cell blocks and NMOS+PMOS decaps within the blocks. Starting at the 90nm CMOS technology node, the traditional decap designs may no longer be suitable due to increased concerns regarding thin-oxide gate leakage and electrostatic discharge (ESD) reliability. Th...

متن کامل

Efficient Optimization of In-Package Decoupling Capacitors for I/O Power Integrity

With high integration density of today’s electronic system and reduced noise margins, maintaining high power integrity becomes more challenging for high performance design. Inserting decoupling capacitors is one important and effective solution to improve the power integrity. The existing decoupling capacitor optimization approaches meet constraints on input impedance. In this paper, we show th...

متن کامل

Multi-Objective Learning Automata for Design and Optimization a Two-Stage CMOS Operational Amplifier

In this paper, we propose an efficient approach to design optimization of analog circuits that is based on the reinforcement learning method. In this work, Multi-Objective Learning Automata (MOLA) is used to design a two-stage CMOS operational amplifier (op-amp) in 0.25μm technology. The aim is optimizing power consumption and area so as to achieve minimum Total Optimality Index (TOI), as a new...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009